可免费试用30天
已有30000+人申请
分析ABI
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地给予有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
分析睿治
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业给予强有力的数字化保障和驱动效应。
企业级多智能体平台,低门槛搭建智能体,灵活编排流程,融合 LLM 实现“问数”、“问知识”
面向企业级数据资产交易运营场景,助力企业实现数据资产的价值挖掘、升值和资产变现。
向日葵色版视频在线观看免费解决方案
文|Ebpay大数据知识库2022-10-11
数据质量管理(Data Quality Management),是指对数据从计划、获取、存储、共享、维护、应用、消亡生命周期的每个阶段里可能引发的各类数据质量问题,进行识别、度量、监控、预警等一系列管理活动,并顺利获得改善和提高组织的管理水平使得数据质量取得进一步提高。数据质量管理的目标是顺利获得数据分析、数据评估、数据清洗、数据监控、错误预警等内容,解决数据质量问题,使数据的质量得以改善,使其满足数据需求方对数据质量的规则要求。
二、为什么企业需要数据质量管理
企业开始意识到数据质量管理的重要性。有助于数据质量需求的共同点有:将新数据源,尤其是非结构化数据与现有系统集成;利用所有可用的企业数据所需的财务投资和竞争压力:以及从数据所在的孤岛中提取数据的难度等。哈佛商学院发布一项研究显示,47% 的新创建数据记录至少包含一个严重错误。麻省理工学院斯隆进行的一项惊人研究指出,不良数据的处理成本可能高达总收入的 15-25%,且是长期的无用成本损耗。一个可靠的数据质量管理计划将确保数据的高度完整性,并且任何需要它的人都可以以安全和受监管的方式随时取得数据。数据质量管理就是找到正确的组合,让合适的人员按照正确的方法配备正确的工具。
三、数据质量评估标准
1、一致性
四、数据质量管理建设方案
1、建立质量管控流程和规范